EXOTIC AMINO ACIDS. 6*. SYNTHESIS OF SUBSTITUTED 4-OXO-4H-PYRIDO[1,2-*a*]PYRIMIDINES

I. Ravina¹, D. Zicane¹, M. Petrova¹, E. Gudriniece¹, and U. Kalejs²

2-Pyridylaminomethyleneisopropylidenemalonates, prepared from ethoxymethyleneisopropylidenemalonate and 2-aminopyridines, form 4-oxo-4H-pyrido[1,2-a]pyrimidines at their melting points and are separated from the reaction mixture by sublimation.

Keywords: 2-aminopyridines, 4-oxo-4H-pyrido[1,2-*a*]pyrimidines, 2-pyridylaminomethyleneisopropylidenemalonates, ethoxymethyleneisopropylidenemalonate.

Among pyridopyrimidines there are compounds which possess antitumour [2], antibacterial [3], diuretic [4], and antiviral [5] properties.

We previously reported [6] on the synthesis of $4-\infty-7R-4H$ -pyrido[1,2-*a*]pyrimidines from 2-pyridylamino- and 5-methyl-2-pyridylaminomethyleneisopropylidenemalonates by melting them. This method of obtaining derivatives of pyridopyrimidines had not been described in the literature at that time. However the authors of paper [7] obtained pyrazolo[1,5-*a*]pyrimidines by refluxing 5-pyrazolylaminomethylene-isopropylidenemalonates in nitrobenzene. We note that our attempts to use similar conditions for the synthesis of pyrido[1,2-*a*]pyrimidines **4a-j** were not crowned with success. Complex mixtures of substances which were difficult to separate were obtained.

In this work we have studied in more detail the behavior of compounds **3a-j** on heating with the objective of using our method [6] for the synthesis of various pyridopyrimidines.

We obtained compounds 3a-j by the method described elsewhere [8] from ethoxymethyleneisopropylidenemalonate 1 and 2-aminopyridines 2a-j in ethanol solution at room temperature for 2-24 h.

When the pyridylaminomethylenemalonates 3a-j were heated to their melting points the dioxane ring opened, acetone was evolved, followed by decarboxylation and cyclization to give the substituted 4-oxo-4H-pyrido[1,2-*a*]pyrimidines 4a-j. Compounds 4a-g sublimed (yields 47-74%) and required no further purification. Compound **4h** sublimed along with the starting material **3h** and was separated by extraction with hexane (29% yield). Compounds **4i**,**j** were obtained in poor yields (**4i** – 24, **4j** – 21%) and their preparation by this method is of no interest.

* For part 5 see [1].

¹ Riga Technical University, Riga LV-1048; e-mail: gudr@ktf.rtu.lv. ² BAPEKS Ltd., Riga LV-1048, Latvia. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, 945-946, July, 2002. Original article submitted April 20, 2000.

2–4 a $R^1 = R^2 = R^4 = H$, $R^3 = Cl$; **b** $R^1 = R^2 = R^4 = H$, $R^3 = Br$; **c** $R^1 = R^2 = R^4 = H$, $R^3 = NO_2$; **d** $R^2 = R^4 = H$, $R^1 = R^3 = Cl$; **e** $R^2 = R^4 = H$, $R^1 = R^3 = Br$; **f** $R^2 = R^3 = R^4 = H$, $R^1 = Me$; **g** $R^1 = R^3 = R^4 = H$, $R^2 = Me$; **h** $R^1 = R^2 = R^3 = H$, $R^4 = Me$; **i** $R^1 = R^3 = R^4 = H$, $R^2 = Et$; **j** $R^2 = R^3 = H$, $R^1 = Et$, $R^4 = Me$

TABLE 1. Characteristics of 2-Pyridylaminomethyleneisopropylidenemalonates **3a-j**

Com- pound	mp, °C	¹ H NMR spectrum, ppm. (<i>J</i> , Hz)	Yield, %
3a	193-194	1.67 (6H, s, 2CH ₃); 7.03 (1H, d, $J = 9$, C ₅ H ₃ N); 7.72 (1H, dd, $J = 9$, $J = 2$, C ₅ H ₃ N);	95
3b	192-193 192-192.4 [9]	8.32 (1H, d, $J = 2$, C_5H_3N); 9.30 (1H, d, $J = 14$, =CH); 11.27 (1H, br. d, $J = 14$, NH) 1.69 (6H, s, 2CH ₃); 7.01 (1H, d, $J = 9$, C_5H_3N); 7.82 (1H, dd, $J = 9$, $J = 2$, C_3H_3N); 8.41 (1H, d, $J = 2$, C_5H_3N); 9.28 (1H, d, $J = 13$, =CH);	96 76 [9]
3c	237-238	11.3 (1H, br. d, $J = 13$, NH) 1.72 (6H, s, 2CH ₃); 7.82 (1H, d, $J = 9$, C ₅ H ₄ N); 8.67 (1H, dd, $J = 9$, $J = 2$, C ₅ H ₄ N); 9.25 (1H, d, $J = 14$, =CH); 9.27 (1H, d, $J = 2$, C ₁ H ₂ N); 11.61 (1H, br. d, $J = 14$, =CH);	47
3d	216-220	9.27 (111, d, $3 = 2$, C ₅ 1.13(), 11.01 (111, d), $3 = 14$, 141) 1.65 (6H, s, 2CH ₃); 7.83 (1H, d, $J = 2$, C ₅ H ₂ N); 8.27 (1H, d, $J = 2$, C ₅ H ₂ N); 9.2 (1H, d, $J = 14$, =CH–); 11.66 (1H, br, d , $J = 14$, NH)	94
3e	207-208	1.69 (6H, s, 2CH ₃); 7.96 (1H, d, $J = 2$, C ₅ H ₂ N); 8.32 (1H, d, $J = 2$, C ₅ H ₂ N); 9.22 (1H, d, $J = 13$, =CH) 11.7 (1H, br. d, $J = 13$, NH)	80
3f	185-186 186-187 [9]	1.69 (6H, s, 2CH ₃); 2.36 (3H, s, CH ₃); 7.07 (1H, dd, $J = 8$, $J = 6$, C_5H_3N); 7.56 (1H, dd, $J = 8$, $J = 1.5$, C_5H_3N); 8.27 (1H, dd, $J = 6$, $J = 1.5$, C_5H_3N); 9.49 (1H, d, $J = 13$, $=CH_{-}$) 11.63 (1H, br, d, $J = 13$, NH)	75 56 [9]
3g	197-198	1.78 (6H, s, 2CH ₃); 2.38 (3H, s, CH ₃); 6.86 (1H, d, $J = 1.5$, C ₅ H ₃ N); 7.1 (1H, d, $J = 5$, C ₅ H ₃ N); 8.25 (1H, d, $J = 5$, C ₅ H ₃ N); 9.33 (1H, d, $J = 14$, =CH); 11.18 (1H, br. d, $J = 14$, NH)	48
3h	153-156 155-160 [9]	1.72 (6H, s, 2CH ₃); 2.49 (3H, s, CH ₃); 6.85 (1H, d, $J = 8$, C ₅ H ₃ N); 7.03 (1H, d, $J = 8$, C ₅ H ₃ N); 7.63 (1H, t, $J = 8$, C ₅ H ₃ N); 9.41 (1H, d, $J = 14$, =CH); 11.31 (1H, br. d, $J = 14$, NH)	75 45 [9]
3i	123-125	1.18 (3H, t, $J = 7$, CH ₃); 1.67 (6H, s, 2CH ₃); 2.61 (2H, q, $J = 7$, CH ₂); 6.82 (1H, d, $J = 1.5$, C ₅ H ₃ N); 6.93 (1H, d, $J = 5$, C ₅ H ₃ N); 8.18 (1H, d, $J = 5$, C ₅ H ₃ N); 9.35 (1H, d, $J = 14$, =CH); 11.13 (1H, br, d, $J = 14$, NH)	53
3ј	162-166 162-165 [9]	1.27 (3H, t, $J = 7$, CH ₃); 1.72 (6H, s, 2CH ₃); 2.45 (3H, s, CH ₃); 2.62 (2H, q, $J = 7$, CH ₂); 6.96 (1H, d, $J = 8$, C ₅ H ₄ N); 7.49 (1H, d, $J = 8$, C ₅ H ₄ N); 9.52 (1H, d, $J = 13$, =CH–); 11.7 (1H, br. d, $J = 13$, =CH–)	75 58 [9]

Com- pound	Empirical formula	Found, % Calculated, %			Γ	mp, °C	¹ H NMR spectrum, δ , ppm (<i>J</i> , Hz)	Yield, %
I · · · ·		С	Н	N	Hal			
4a	C ₈ H ₅ ClN ₂ O	<u>53.41</u> 53.21	<u>2.52</u> 2.79	<u>15.34</u> 15.51	<u>19.15</u> 19.63	121-123	6.35 (1H, d, <i>J</i> = 7, 3-H); 7.55 (2H, m, 9-H, 8-H); 8.15 (1H, d, <i>J</i> = 7, 2-H); 9.0 (1H, d, <i>J</i> = 2, 6-H)	50
4b	C ₈ H ₅ BrN ₂ O	$\frac{42.40}{42.70}$	$\frac{2.41}{2.22}$	$\frac{12.71}{12.45}$	<u>35.65</u> 35.51	127-130	6.33 (1H, d, <i>J</i> = 7, 3-H); 7.46 (1H, d, <i>J</i> = 9, 9-H); 7.66 (1H, dd, <i>J</i> = 9, <i>J</i> = 2, 8-H); 8.24 (1H, d, <i>J</i> = 7, 2-H); 9.04 (1H, d, <i>J</i> = 2, 6-H)	62
4c	C ₈ H ₅ N ₃ O ₃	$\frac{50.12}{50.27}$	$\frac{2.73}{2.64}$	<u>21.99</u> 21.98		152-154	6.42 (1H, d, <i>J</i> = 7, 3-H); 7.61 (1H, d, <i>J</i> = 9, 6-H); 8.23 (1H, d, <i>J</i> = 7, 2-H); 8.34 (1H, dd, <i>J</i> = 9, <i>J</i> = 2, 7-H); 9.90 (1H, d, <i>J</i> = 2, 9-H)	47
4d	$C_8H_4Cl_2N_2O$	$\frac{44.43}{44.68}$	$\frac{2.24}{1.87}$	$\frac{13.20}{13.03}$	$\frac{33.10}{32.97}$	128-129	6.49 (1H, d, <i>J</i> = 7, 3-H); 7.79 (1H, d, <i>J</i> = 2, 8-H); 8.29 (1H, d, <i>J</i> = 7, 2-H); 8.91 (1H, d, <i>J</i> = 2, 6-H)	74
4 e	$C_8H_4Br_2N_2O$	<u>31.56</u> 31.61	$\frac{1.31}{1.33}$	<u>9.29</u> 9.22	$\frac{53.02}{52.58}$	185-188	6.38 (1H, d, <i>J</i> = 7, 3-H); 8.18 (1H, d, <i>J</i> = 2, 8-H); 8.29 (1H, d, <i>J</i> = 7, 2-H); 9.06 (1H, d, <i>J</i> = 2, 6-H)	52
4f	C ₉ H ₈ N ₂ O	$\frac{67.13}{67.49}$	$\frac{5.38}{5.03}$	<u>17.35</u> 17.49		110-113	2.56 (3H, s, CH ₃); 6.34 (1H, d, <i>J</i> = 7, 3-H); 6.89 (1H, t, <i>J</i> = 7.5, 7-H); 7.52 (1H, dd, <i>J</i> = 7.5, <i>J</i> = 1.5, 8-H); 8.23 (1H, d, <i>J</i> = 7, 2-H); 8.89 (1H, dd, <i>J</i> = 7.5, <i>J</i> = 1.5, 6-H)	59
4g	$C_9H_8N_2O$	$\frac{67.70}{67.49}$	$\frac{4.92}{5.03}$	$\frac{17.52}{17.49}$		136-141	2.42 (3H, s, CH ₃); 6.27 (1H, d, <i>J</i> = 7, 3-H); 6.82 (1H, dd, <i>J</i> = 8, <i>J</i> = 2, 7-H); 7.35 (1H, d, <i>J</i> = 2, 9-H); 8.18 (1H, d, <i>J</i> = 7, 2-H); 8.89 (1H, d, <i>J</i> = 8, 6-H)	50
4h	C ₉ H ₈ N ₂ O	<u>67.33</u> 67.49	$\frac{4.91}{5.03}$	$\frac{17.62}{17.49}$		111-114	3.01 (3H, s, CH ₃); 6.16 (1H, d, <i>J</i> = 7, 3-H); 6.6 (1H, m, 8-H); 7.33 (2H, m, 9-H, 7-H); 7.99 (1H, d, <i>J</i> = 7, 2-H)	29
4i	$C_{10}H_{10}N_2O$	<u>69.08</u> 68.95	<u>5.66</u> 5.79	$\frac{15.90}{16.08}$		73-74	1.23 (3H, t, <i>J</i> = 7, CH ₃); 2.71 (2H, q, <i>J</i> = 7, CH ₂); 6.29 (1H, d, <i>J</i> = 7, 3-H); 6.95 (1H, dd, <i>J</i> = 8, <i>J</i> = 2, 7-H); 7.41 (1H, d, <i>J</i> = 2, 9-H); 8.18 (1H, d, <i>J</i> = 7, 2-H); 8.91 (1H, d, <i>J</i> = 8, 6-H)	24
4j	$C_{11}H_{12}N_2O$	$\frac{70.02}{70.19}$	<u>6.39</u> 6.43	<u>16.72</u> 14.88		57-61	1.22 (3H, t, <i>J</i> = 7, CH ₃); 2.77 (2H, q, <i>J</i> = 7, CH ₂); 2.91 (3H, s, CH ₃); 6.2 (1H, d, <i>J</i> = 7, 3-H); 6.6 (1H, d, <i>J</i> = 7.5, 7-H); 7.17 (1H, d, <i>J</i> = 7.5, 8-H); 8.03 (1H, d, <i>J</i> = 7, 2 -H)	21

TABLE 2. Characteristics of the Substituted 4-Oxo-4H-pyrido[1,2-a]pyrimidines Synthesized, 4a-j

The composition of the compounds synthesized was confirmed by the results of elemental analysis, and their structures by the ¹H NMR spectra, in which the proton signal of all the fragments of the molecules resonated in their characteristic regions.

EXPERIMENTAL

¹H NMR spectra of CDCl₃ or DMSO-d₆ solutions with HMDS as internal standard were recorded with a Bruker WH90/DS instrument (90 MHz).

The purity of the synthesized compounds were monitored by TLC on Silufol strips with the following solvent systems: chloroform-methanol-glacial acetic acid, 9:1:1 (**3b-e,j**), ethyl acetate (**3f-i, 4b-j**), and chloroform (**3a, 4a,b**).

Characteristics of the compounds synthesized are given in Tables 1 and 2.

2-Pyridylaminomethyleneisopropylidenemalonates (3a-j). A solution of ethoxyisopropylidenemalonate 1 (0.005 mol) [7] in ethanol (10 ml) at ~20°C was added with stirring to an equimolar quantity of the corresponding 2-aminopyridine 2a-j dissolved in ethanol. In the case of 3i the reaction mixture was heated for 1 h at 50°C. The precipitate was filtered off after 2-3 h (3a-e) or 24 h (3f-j). In the case of 3i, water (100 ml) was added to the reaction mixture. Compound 3h was recrystallized from ethanol, 3i from 1:2 acetonitrile–water. Compounds 3a-g,j were chromatographically homogeneous and did not require recrystallization.

Substituted 4-Oxo-4H-pyrido[1,2-*a*]pyrimidines (4a-j). Compounds 3a-g (0.002 mol) were melted in a porcelain cup, closed with a glass funnel. The sublimates were chromatographically homogeneous for compounds 4a-g. Compounds 4h-j were isolated from the fused mixture with hexane.

REFERENCES

- 1. D. R. Zicane, Z. F. Tetere, I. A. Rijkure, M. V. Petrova, E. Yu. Gudriniece, and U. O. Kalejs, *Khim. Geterotsikl. Soedin.*, 903 (2000).
- 2. H. Akimoto, T. Miwa, and K. Otsu, Jap. Pat. 04,235,986; Chem. Abstr., 118, 213101 (1993).
- 3. B. Hurlbert and B. Valenti, J. Med. Chem., 11, 708 (1968).
- 4. H. Parish, P. Gilliom, W. Purcell, R. Browne, R. Spirk, and H. White, J. Med. Chem., 25, 98 (1982).
- 5. D. Bouzard, Anitbiotics and Antiviral Compounds, VCH (Weinheim), 186 (1993).
- 6. D. R. Zicane, I. T. Ravina, Z. F. Tetere, I. A. Rijkure, E. J. Gudrinece, and U. O. Kalejs, *Khim. Geterotsikl. Soedin.*, 857 (2000).
- 7. J. Quiroga, A. Hormoza, B. Insuasty, C. Saitz, C. Jullian, and A. Canete, *J. Heterocycl. Chem.*, **35**, 61 (1998).
- 8. G. Bihlmayer, G. Derflinger, J. Derkosch, and O. Polansky, *Monatsh. Chem.*, 98, 564 (1967).
- 9. Sterling Drug, Brit. Pat. 1147759; Chem. Abstr., 71, 70125 (1969).